1. Tian WC, Fu GT, Xin KL, Zhang ZY, Liao ZL.  Improving the interpretability of deep reinforcement learning in urban drainage system operation[J].Water Research, 2024, 249

  2. Song WK, Yan HX, Tao T, Guan MF, Li F, Xin KL.  Modeling Transient Mixed Flows in Drainage Networks With Smoothed Particle Hydrodynamics[J].Water Resources Management, 2024, 38(3):861-879.

  3. Tian WC, Zhang ZY, Bouffard D, Wu H, Xin KL, Gu XY, Liao ZL.  Enhancing interpretability and generalizability of deep learning-based emulator in three-dimensional lake hydrodynamics using Koopman operator and transfer learning: Demonstrated on the example of lake Zurich[J].Water Research, 2024, 249

  4. Tian WC, Xin KL, Zhang ZY, Zhao MH, Liao ZL, Tao T.  Flooding mitigation through safe & trustworthy reinforcement learning[J].Journal Of Hydrology, 2023, 620

  5. Pu ZH, Yan JR, Chen L, Li ZR, Tian WC, Tao T, Xin KL.  A hybrid Wavelet-CNN-LSTM deep learning model for short- term urban water demand forecasting[J].Frontiers Of Environmental Science & Engineering, 2023, 17(2)

  6. Lu SQ, Qiu J, Bai L, Hu R, Xin KL.  Carbon emissions of water supply systems in China: Characteristic, right, right balance and reduction potential assessment[J].Journal Of Cleaner Production, 2023, 42

  7. Chen L, Yan HX, Yan JR, et al.  Short-term water demand forecast based on automatic feature extraction by one-dimensional convolution[J].Journal Of Hydrology, 2022, 606

  8. Tian WC, Liao ZL, Zhang ZY, et al.  Flooding and Overflow Mitigation Using Deep Reinforcement Learning Based on Koopman Operator of Urban Drainage Systems[J].Water Resources Research, 2022, 58(7)

  9. Li ZR, Wang JY, Yan HX, et al.  Fast Detection and Localization of Multiple Leaks in Water Distribution Network Jointly Driven by Simulation and Machine Learning[J].Journal Of Water Resources Planning And Management, 2022, 148(9)

  10. Hu JM, Tao T.  Numerical investigation of ice pigging isothermal flow in water-supply pipelines cleaning[J].Chemical Engineering Research & Design, 2022, 182:428-437.

  11. Chen XR, Zhou X, Xin KL, et al.  Sensitivity-Oriented Clustering Method for Parameter Grouping in Water Network Model Calibration[J].Water Resources Research, 2022, 58(5)

  12. Yan JR, Tao T.  Unsupervised anomaly detection in hourly water demand data using an asymmetric encoder-decoder model[J].Journal Of Hydrology, 2022, 613

  13. Fei X,Yan H,Tao T, et al. Integrated Rainfall-runoff Process with Shallow Water Model By Mass Varied Smoothed Particle Hydrodynamics: Infiltration Effect Implementation[J]. Journal of Hydrodynamics, 2021, 33(6): 1190-1201.

  14. Xu W,Zhou X,Xin K, et al. Disturbance Extraction for Burst Detection in Water Distribution Networks Using Pressure Measurements[J]. Water Resources Research, 2020, 56(5): .



联系方式

地址: 上海市四平路1239号

电话/传真:021-65982200

邮箱:webmaster@tongji.edu.cn

沪ICP备10014176号  沪举报中心 您的IP地址是:116.231.132.71